ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 [Всего задач: 16]      



Задача 116402

Темы:   [ Произведения и факториалы ]
[ Индукция (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Многочлены (прочее) ]
[ Комплексные числа помогают решить задачу ]
[ Линейная и полилинейная алгебра ]
Сложность: 4+
Классы: 10,11

Обозначим через [n]! произведение 1·11·111·...·11...11 – всего n сомножителей, в последнем – n единиц.
Докажите, что  [n + m]!  делится на произведение [n]!·[m]!.

Прислать комментарий     Решение

Страница: << 1 2 3 4 [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .