ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 192 193 194 195 196 197 198 >> [Всего задач: 2440]      



Задача 88250

Темы:   [ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
[ Обыкновенные дроби ]
Сложность: 3-
Классы: 5,6,7

Бак был полон воды. Эту воду поровну перелили в три бидона. Оказалось, что в первом бидоне вода заняла половину его объёма, во втором бидоне вода заняла ⅔, а в третьем бидоне – ¾ его объёма. Бак и все три бидона вмещают по целому числу литров. При каком наименьшем объёме бака возможна такая ситуация?

Прислать комментарий     Решение

Задача 97776

Темы:   [ Количество и сумма делителей числа ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3-
Классы: 8,9

Автор: Левин М.

Найдите все натуральные числа, делящиеся на 30 и имеющие ровно 30 различных делителей.

Прислать комментарий     Решение

Задача 97829

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Делимость чисел. Общие свойства ]
Сложность: 3-
Классы: 8,9

Автор: Фомин С.В.

175 шалтаев стоят дороже, чем 125 болтаев, но дешевле, чем 126 болтаев. Доказать, что на покупку трёх шалтаев и одного болтая не хватит:
  а)  80 коп.;
  б)  одного рубля.

Прислать комментарий     Решение

Задача 97925

Темы:   [ Деление с остатком ]
[ Уравнения в целых числах ]
Сложность: 3-
Классы: 8,9

Автор: Фольклор

Можно ли число 1986 представить в виде суммы шести квадратов нечётных чисел?

Прислать комментарий     Решение

Задача 97940

Темы:   [ Десятичная система счисления ]
[ Деление с остатком ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3-
Классы: 7,8,9

Автор: Плачко В.

Докажите, что предпоследняя цифра любой степени числа 3 чётна.

Прислать комментарий     Решение

Страница: << 192 193 194 195 196 197 198 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .