Страница:
<< 119 120 121 122
123 124 125 >> [Всего задач: 694]
[Метод Ньютона и числа Фибоначчи]
|
|
Сложность: 4 Классы: 10,11
|
Применим метод Ньютона (см. задачу 61328) для
приближённого нахождения корней многочлена f(x) = x² – x – 1. Какие последовательности чисел получатся, если
а) x0 = 1; б) x0 = 0?
К каким числам будут сходиться эти последовательности?
Опишите разложения чисел xn в цепные дроби.
[Метод Лобачевского и числа Люка]
|
|
Сложность: 4 Классы: 10,11
|
Постройте последовательность полиномов, которая получается, если метод
Лобачевского (см. задачу 61333) применить для приближенного нахождения корней многочлена x² – x – 1. Какие последовательности будут сходиться к корням x1 и x2, если |x1| > |x2|?
[Целозначные многочлены]
|
|
Сложность: 4 Классы: 10,11
|
Пусть многочлен f(x) степени n принимает целые значения в точках x = 0, 1, ..., n.
Докажите, что
где d0, d1, ..., dn – некоторые целые числа.
|
|
Сложность: 4 Классы: 10,11
|
Докажите, что если многочлен f(x) степени n
принимает целые значения в точках x = 0, 1, ..., n, то он принимает целые значения во всех целых точках.
|
|
Сложность: 4 Классы: 8,9,10,11
|
а) В таблицу 2×n (где n > 2) вписаны числа. Суммы во всех столбцах различны. Докажите, что можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны.
б) В таблицу 10×10 вписаны числа. Суммы во всех столбцах различны. Всегда ли можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны?
Страница:
<< 119 120 121 122
123 124 125 >> [Всего задач: 694]