Страница:
<< 122 123 124 125
126 127 128 >> [Всего задач: 694]
|
|
Сложность: 4 Классы: 9,10,11
|
Числа 1, 2, 3, ..., n записываются в некотором порядке: a1, a2, a3, ..., an. Берётся сумма S = a1/1 + a2/2 + ... + an/n. Найдите такое n, чтобы среди таких сумм (при всевозможных перестановках a1, a2, a3, ..., an) встретились все целые числа от n до n + 100.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Участники шахматного турнира сыграли друг с другом по одной партии. Для каждого участника A было подсчитано число набранных им очков (за победу дается 1 очко, за ничью – ½ очка, за поражение – 0 очков) и
коэффициент силы по формуле: сумма очков тех участников, у кого A выиграл, минус сумма очков тех, кому он проиграл.
а) Могут ли коэффициенты силы всех участников быть больше 0?
б) Могут ли коэффициенты силы всех участников быть меньше 0?
|
|
Сложность: 4 Классы: 7,8,9
|
Прямоугольник размером 1×
k при всяком натуральном
k будем называть
полоской. При каких натуральных
n прямоугольник размером
1995×
n
можно разрезать на попарно различные полоски?
|
|
Сложность: 4 Классы: 8,9,10
|
Последовательность натуральных чисел ai такова, что НОД(ai, aj) = НОД(i, j) для всех i ≠ j. Докажите, что ai = i для всех i ∈ N.
|
|
Сложность: 4 Классы: 7,8,9
|
В классе 33 человека. У каждого ученика спросили, сколько
у него в классе тезок и сколько однофамильцев (включая родственников).
Оказалось, что среди названных чисел встретились все целые от 0 до 10
включительно. Докажите, что в классе есть два ученика с одинаковыми именем
и фамилией.
Страница:
<< 122 123 124 125
126 127 128 >> [Всего задач: 694]