ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 123 124 125 126 127 128 129 >> [Всего задач: 694]      



Задача 109863

Темы:   [ Итерации ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 10,11

Дана функция f(x)= . Найдите f(.. f(f(19))..)95 раз .
Прислать комментарий     Решение


Задача 109924

Темы:   [ Периодические и непериодические дроби ]
[ Принцип Дирихле (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 9,10

Назовём сочетанием цифр несколько цифр, записанных подряд. В стране Роботландии некоторые сочетания цифр объявлены запрещёнными. Известно, что запрещённых сочетаний конечное число и существует бесконечная десятичная дробь, не содержащая запрещённых сочетаний. Докажите, что существует бесконечная периодическая десятичная дробь, не содержащая запрещённых сочетаний.

Прислать комментарий     Решение

Задача 116037

Темы:   [ Турниры и турнирные таблицы ]
[ Индукция (прочее) ]
[ Числа Фибоначчи ]
Сложность: 4
Классы: 9,10,11

55 боксёров участвовали в турнире по системе "проигравший выбывает". Бои шли последовательно. Известно, что у участников каждого боя число предыдущих побед отличалось не более чем на 1. Какое наибольшее число боёв мог провести победитель турнира?

Прислать комментарий     Решение

Задача 116048

Темы:   [ Задачи на движение ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Арифметическая прогрессия ]
Сложность: 4
Классы: 8,9,10,11

На кольцевом треке 2n велосипедистов стартовали одновременно из одной точки и поехали с постоянными различными скоростями (в одну сторону). Если после старта два велосипедиста снова оказываются одновременно в одной точке, назовём это встречей. До полудня каждые два велосипедиста встретились хотя бы раз, при этом никакие три или больше не встречались одновременно. Докажите, что до полудня у каждого велосипедиста было не менее n² встреч.

Прислать комментарий     Решение

Задача 116419

Темы:   [ Разбиения на пары и группы; биекции ]
[ Процессы и операции ]
[ Арифметическая прогрессия ]
Сложность: 4
Классы: 10,11

На съезд собрались 5000 кинолюбителей, каждый видел хотя бы один фильм. Их делят на секции двух типов: либо обсуждение фильма, который все члены секции видели, либо каждый рассказывает о виденном фильме, который больше никто в секции не видел. Докажите, что всех можно разбить ровно на 100 секций. (Секции из одного человека разрешаются: он пишет отзыв о виденном фильме.)

Прислать комментарий     Решение

Страница: << 123 124 125 126 127 128 129 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .