ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 383]      



Задача 31093

Темы:   [ Степень вершины ]
[ Обход графов ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 6,7,8

Существует ли ломаная, пересекающая все рёбра картинки по одному разу?

Прислать комментарий     Решение

Задача 31096

Темы:   [ Степень вершины ]
[ Обход графов ]
Сложность: 3+
Классы: 6,7,8

Доказать, что связный граф можно обойти, проходя по каждому ребру дважды.

Прислать комментарий     Решение

Задача 35362

Темы:   [ Подсчет двумя способами ]
[ Деревья ]
Сложность: 3+
Классы: 7,8

У Царя Гвидона было 5 сыновей. Среди его потомков 100 имели каждый ровно по 3 сына, а остальные умерли бездетными.
Сколько потомков было у царя Гвидона?

Прислать комментарий     Решение

Задача 35585

Темы:   [ Связность и разложение на связные компоненты ]
[ Степень вершины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Какое наименьшее число соединений требуется для организации проводной сети связи из 10 узлов, чтобы при выходе из строя любых двух узлов связи сохранялась возможность передачи информации между любыми двумя оставшимися (хотя бы по цепочке через другие узлы)?

Прислать комментарий     Решение

Задача 64314

Темы:   [ Турниры и турнирные таблицы ]
[ Степень вершины ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 6,7

В шахматном турнире каждый из восьми участников сыграл с каждым. В случае ничьей (и только в этом случае) партия ровно один раз переигрывалась и результат переигровки заносился в таблицу. Барон Мюнхгаузен утверждает, что в итоге два участника турнира сыграли по 11 партий, один – 10 партий, три – по 8 партий и два – по 7 партий. Может ли он оказаться прав?

Прислать комментарий     Решение

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 383]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .