ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 411]      



Задача 64633

Темы:   [ Числовые таблицы и их свойства ]
[ Теория графов (прочее) ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 10,11

Петя поставил на доску 50×50 несколько фишек, в каждую клетку – не больше одной. Докажите, что у Васи есть способ поставить на свободные поля этой же доски не более 99 новых фишек (возможно, ни одной) так, чтобы по-прежнему в каждой клетке стояло не больше одной фишки, и в каждой строке и каждом столбце этой доски оказалось чётное количество фишек.

Прислать комментарий     Решение

Задача 65118

Темы:   [ Числовые последовательности (прочее) ]
[ Задачи с ограничениями ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 9,10

Петя хочет выписать все возможные последовательности из 100 натуральных чисел, в каждой из которых хотя бы раз встречается тройка, а любые два соседних члена различаются не больше, чем на 1. Сколько последовательностей ему придётся выписать?

Прислать комментарий     Решение

Задача 65125

Темы:   [ Числовые последовательности (прочее) ]
[ Задачи с ограничениями ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 11

Петя хочет выписать все возможные последовательности из 100 натуральных чисел, в каждой из которых хотя бы раз встречается число 4 или 5, а любые два соседних члена различаются не больше, чем на 2. Сколько последовательностей ему придётся выписать?

Прислать комментарий     Решение

Задача 65238

Темы:   [ Турниры и турнирные таблицы ]
[ Принцип Дирихле (прочее) ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 9,10,11

В волейбольном турнире участвовали 110 команд, каждая сыграла с каждой из остальных ровно одну игру (в волейболе не бывает ничьих). Оказалось, что в любой группе из 55 команд найдётся одна, которая проиграла не более чем четырём из остальных 54 команд этой группы. Докажите, что во всём турнире найдётся команда, проигравшая не более чем четырём из остальных 109 команд.

Прислать комментарий     Решение

Задача 65685

Темы:   [ Кооперативные алгоритмы ]
[ Принцип крайнего (прочее) ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 9,10,11

В английском клубе вечером собрались n его членов  (n ≥ 3).  По традициям клуба каждый принес с собой сок того вида, который он предпочитает, в том количестве, которое он планирует выпить в течение вечера. Согласно правилам клуба, в любой момент любые три его члена могут присесть за столик и выпить сока (каждый – своего) в любом количестве, но обязательно все трое поровну. Докажите, что для того, чтобы все члены могли в течение вечера полностью выпить принесенный с собой сок, необходимо и достаточно, чтобы доля сока, принесенного каждым членом клуба, не превосходила одной трети от общего количества.

Прислать комментарий     Решение

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 411]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .