Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 123]
|
|
Сложность: 3+ Классы: 6,7,8
|
Компания из нескольких друзей вела переписку так, что каждое письмо получали все, кроме отправителя. Каждый написал одно и то же количество писем, в результате чего всеми вместе было получено 440 писем. Сколько человек могло быть в этой компании?
В стране Леонардии все дороги – с односторонним движением. Каждая дорога соединяет два города и не проходит через другие города. Департамент статистики вычислил для каждого города суммарное число жителей в городах, откуда в него ведут дороги, и суммарное число жителей в городах, куда ведут дороги из него. Докажите, что хотя бы для одного города первое число оказалось не меньше второго.
|
|
Сложность: 4- Классы: 8,9,10
|
Каждый из 102 учеников одной школы знаком не менее чем с 68 другими.
Докажите, что среди них найдутся четверо, имеющие одинаковое число знакомых.
|
|
Сложность: 4- Классы: 9,10,11
|
Среди n рыцарей каждые двое – либо друзья, либо враги. У каждого из рыцарей ровно три врага, причём враги его друзей являются его врагами.
При каких n такое возможно?
Среди 49 школьников каждый знаком не менее чем с 25 другими.
Докажите, что можно их разбить на группы из двух или трёх человек так, чтобы каждый был знаком со всеми в своей группе.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 123]