ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 67]      



Задача 58348

 [Теорема Фейербаха]
Темы:   [ Цепочки окружностей. Теорема Фейербаха ]
[ Инверсия помогает решить задачу ]
[ Прямая Эйлера и окружность девяти точек ]
[ Вписанные и описанные окружности ]
Сложность: 7
Классы: 9,10,11

а) Докажите, что окружность, проходящая через середины сторон треугольника, касается его вписанной и трех вневписанных окружностей (Фейербах).
б) На сторонах AB и AC треугольника ABC взяты точки C1 и B1 так, что AC1 = B1C1 и вписанная окружность S треугольника ABC является вневписанной окружностью треугольника AB1C1. Докажите, что вписанная окружность треугольника AB1C1 касается окружности, проходящей через середины сторон треугольника ABC.
Прислать комментарий     Решение


Задача 64895

Темы:   [ Вписанные и описанные окружности ]
[ Средняя линия треугольника ]
[ Гомотетия помогает решить задачу ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 3+
Классы: 8,9,10,11

Точки D, Е и F – середины сторон ВС, АС и АВ треугольника АВС соответственно. Через центры вписанных окружностей треугольников AEF, BDF и СDE проведена окружность. Докажите, что её радиус равен радиусу описанной окружности треугольника DEF.

Прислать комментарий     Решение

Задача 64971

Темы:   [ Вписанные и описанные окружности ]
[ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 4-
Классы: 8,9,10

В остроугольном треугольнике ABC проведены высоты BB1 и CC1. A0 – середина стороны BC. Прямые A0B1 и A0C1 пересекают прямую, проходящую через вершину A параллельно прямой BC, в точках P и Q. Докажите, что центр вписанной окружности треугольника PA0Q лежит на высоте треугольника ABC.

Прислать комментарий     Решение

Задача 65240

Темы:   [ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 4-
Классы: 9,10,11

Остроугольный треугольник ABC  (AB < AC)  вписан в окружность Ω. Пусть M – точка пересечения его медиан, а AH – высота. Луч MH пересекает Ω в точке A'. Докажите, что описанная окружность треугольника A'HB касается прямой AB.

Прислать комментарий     Решение

Задача 66262

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Прямая Эйлера и окружность девяти точек ]
[ Средняя линия треугольника ]
[ ГМТ - прямая или отрезок ]
Сложность: 4
Классы: 9,10

В треугольнике ABC  O – центр описанной окружности, I – центр вписанной. Прямая, проходящая через I и перпендикулярная OI, пересекает AB в точке X, а внешнюю биссектрису угла C – в точке Y. В каком отношении I делит отрезок XY?
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 67]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .