Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 367]
|
|
Сложность: 4- Классы: 5,6,7
|
В классе 27 учеников. Каждый из учеников класса занимается не более чем в двух кружках, причём для каждых двух учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимаются не менее 18 учеников.
Каждое из рёбер полного графа с 17 вершинами покрашено в один из трёх цветов.
Докажите, что есть три вершины, все рёбра между которыми – одного цвета.
|
|
Сложность: 4 Классы: 7,8,9
|
В колоде 16 карт, пронумерованных сверху вниз. Разрешается снять часть колоды сверху, после чего снятую и оставшуюся части колоды, не переворачивая "врезать" друг в друга. Может ли случиться, что после нескольких таких операций карты окажутся пронумерованными снизу вверх? Если да, то за какое наименьшее число операций это может произойти?
|
|
Сложность: 4 Классы: 8,9,10
|
Существует ли 2016-значное число, перестановкой цифр которого можно получить 2016 разных 2016-значных полных квадратов?
|
|
Сложность: 4 Классы: 8,9,10
|
Из клетчатого бумажного квадрата 100×100 вырезали по границам клеток 1950 доминошек (двуклеточных прямоугольников). Докажите, что из оставшейся части можно вырезать по границам клеток четырёхклеточную фигурку вида Т – возможно, повёрнутую. (Если такая фигурка уже есть среди оставшихся частей, считается, что её получилось вырезать.)
Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 367]