Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 222]
|
|
Сложность: 4- Классы: 10,11
|
Коля и Витя играют в следующую игру. На столе лежит куча из 100 камней. Мальчики
делают ходы поочерёдно, а начинает Коля. Делая ход, играющий делит каждую
кучку, в которой больше одного камня, на две меньшие кучки. Выигрывает тот, кто
после своего хода оставляет кучки по одному камню в каждой. Сможет ли Коля
сделать так, чтобы выиграть при любой игре Вити?
В клетках таблицы размером 10×20 расставлено 200 различных чисел. В
каждой строчке отмечены два наибольших числа красным цветом, а в каждом столбце
отмечены два наибольших числа синим цветом. Доказать, что не менее трёх чисел
отмечены в таблице как красным, так и синим цветом.
За дядькой Черномором выстроилось чередой бесконечное число богатырей. Доказать,
что он может приказать части из них выйти из строя так, чтобы в строю осталось
бесконечно много богатырей и все они стояли по росту (не обязательно в порядке
убывания роста).
Числа от 1 до 1000 расставлены по окружности.
Доказать, что их можно соединить 500 непересекающимися отрезками, разность чисел на концах которых (по модулю) не более 749.
|
|
Сложность: 4- Классы: 8,9,10,11
|
На окружности имеется 21 точка.
Докажите, что среди дуг, имеющих концами эти точки, найдётся не меньше ста
таких, угловая мера которых не превышает 120°.
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 222]