ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 71]      



Задача 32878

Темы:   [ Задачи на движение ]
[ Примеры и контрпримеры. Конструкции ]
[ Покрытия ]
Сложность: 4
Классы: 7

Улитка проснулась, доползла от гриба до родника и уснула. Путешествие заняло шесть часов. Улитка ползла то быстрее, то медленнее, останавливалась. За улиткой наблюдали несколько учёных. Известно, что:
  1) В каждый момент путешествия улитку наблюдал хотя бы один учёный.
  2) Каждый учёный наблюдал неспящую улитку в течение одного часа (без перерыва) и говорит, что за это время улитка проползла ровно один метр.
Каково наибольшее возможное расстояние от гриба до родника?

Прислать комментарий     Решение

Задача 108176

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Свойства биссектрис, конкуррентность ]
[ Покрытия ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 4
Классы: 7,8,9

Докажите, что остроугольный треугольник полностью покрывается тремя квадратами, построенными на его сторонах как на диагоналях.
Прислать комментарий     Решение


Задача 109035

Темы:   [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Площадь круга, сектора и сегмента ]
[ Покрытия ]
Сложность: 4+
Классы: 9,10,11

Доказать, что существует линия длины +1 , которую нельзя покрыть плоской выпуклой фигурой площади S .
Прислать комментарий     Решение


Задача 58085

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Вписанные и описанные многоугольники ]
[ Покрытия ]
Сложность: 4+
Классы: 8,9,10

В квадрате со стороной 1 находится 51 точка. Докажите, что какие-то три из них можно накрыть кругом радиуса 1/7.
Прислать комментарий     Решение


Задача 109880

Темы:   [ Длины сторон (неравенства) ]
[ Теорема косинусов ]
[ Покрытия ]
Сложность: 4+
Классы: 9,10,11

Длина наибольшей стороны треугольника равна 1. Докажите, что три круга радиуса с центрами в вершинах покрывают весь треугольник.
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 71]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .