ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 158 159 160 161 162 163 164 >> [Всего задач: 2247]      



Задача 115728

Темы:   [ Вписанные четырехугольники ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

В окружность вписан четырёхугольник ABCD . Прямые AB и CD пересекаются в точке M , а прямые BC и AD — в точке N . Известно, что BM=DN . Докажите, что CM=CN .
Прислать комментарий     Решение


Задача 115737

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 8,9,11

Вокруг выпуклого четырёхугольника ABCD описаны три прямоугольника. Известно, что два из этих прямоугольников являются квадратами. Верно ли, что и третий обязательно является квадратом? (Прямоугольник описан около четырёхугольника ABCD, если на каждой стороне прямоугольника лежит по одной вершине четырёхугольника.)

Прислать комментарий     Решение

Задача 115858

Темы:   [ Замечательное свойство трапеции ]
[ Центр масс ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 4
Классы: 8,9,10,11

Автор: Нилов Ф.

Дан четырёхугольник ABCD. Его противоположные стороны AB и CD пересекаются в точке K. Его диагонали пересекаются в точке L. Известно, что прямая KL проходит через центр тяжести вершин четырёхугольника ABCD. Докажите, что ABCD – трапеция.

Прислать комментарий     Решение

Задача 115899

Темы:   [ Описанные четырехугольники ]
[ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 4
Классы: 8,9,10,11

Четырёхугольник ABCD описан около окружности, лучи BA и CD пересекаются в точке E, лучи BC и AD – в точке F. Вписанная окружность треугольника, образованного прямыми AB, CD и биссектрисой угла B, касается прямой AB в точке K, а вписанная окружность треугольника, образованного прямыми AD, BC и биссектрисой угла B, касается прямой BC в точке L. Докажите, что прямые KL, AC и EF пересекаются в одной точке.

Прислать комментарий     Решение

Задача 115915

Темы:   [ Вписанные четырехугольники ]
[ Теорема синусов ]
[ Четыре точки, лежащие на одной окружности ]
[ Вспомогательная окружность ]
Сложность: 4
Классы: 8,9

AB — хорда окружности, делящая её на два сегмента. M и N середины дуг, на которые делят окружность точки A и B . При повороте вокруг точки A на некоторый угол точка B переходит в точку B' , а точка M — в точку M' . Докажите, что отрезки, соединяющие середину отрезка BB' с точками M' и N , перпендикулярны.
Прислать комментарий     Решение


Страница: << 158 159 160 161 162 163 164 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .