ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 164 165 166 167 168 169 170 >> [Всего задач: 2247]
Ромб ABCD и параллелограмм BCFE с углом
Основания трапеции равны a и b. Известно, что через середину одной из её сторон можно провести прямую, делящую трапецию на два четырёхугольника, в каждый из которых можно вписать окружность. Найдите другую боковую сторону этой трапеции.
Через вершины A, B, C, D вписанного четырёхугольника, диагонали которого взаимно перпендикулярны, проведены касательные к описанной окружности. Докажите, что образованный ими четырёхугольник — вписанный.
В четырёхугольнике ABCD известно, что DO = 4, BC = 5,
В параллелограмм P1 вписан параллелограмм P2, а в параллелограмм P2 вписан параллелограмм P3, стороны которого параллельны сторонам P1. Докажите, что длина хотя бы одной из сторон P1 не превосходит удвоенной длины параллельной ей стороны P3.
Страница: << 164 165 166 167 168 169 170 >> [Всего задач: 2247] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |