Страница:
<< 38 39 40 41
42 43 44 >> [Всего задач: 993]
|
|
Сложность: 3+ Классы: 10,11
|
Около единичного квадрата ABCD описана окружность, на которой выбрана точка М.
Какое наибольшее значение может принимать произведение MA·MB·MC·MD?
|
|
Сложность: 3+ Классы: 9,10
|
Квадрат ABCD и равнобедренный прямоугольный треугольник AEF (∠AEF = 90°) расположены так, что точка E
лежит на отрезке BC (см. рисунок). Найдите угол DCF.
|
|
Сложность: 3+ Классы: 10,11
|
В квадрате ABCD точки E и F – середины сторон BC и CD соответственно. Отрезки AE и BF пересекаются в точке G.
Что больше: площадь треугольника AGF или площадь четырёхугольника GECF?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Дан квадрат ABCD, M и N – середины сторон BC и AD. На продолжении диагонали AC за точку A взяли точку K. Отрезок KM пересекает сторону AB
в точке L. Докажите, что углы KNA и LNA равны.
|
|
Сложность: 3+ Классы: 7,8,9
|
Внутри ромба АВСD выбрана точка N так, что треугольник ВСN – равносторонний. Биссектриса BL треугольника ABN пересекает диагональ АС в точке K. Докажите, что точки K,
N и D лежат на одной прямой.
Страница:
<< 38 39 40 41
42 43 44 >> [Всего задач: 993]