Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 993]
|
|
Сложность: 3+ Классы: 6,7,8
|
Квадраты ABCD и BEFG расположены так, как показано на рисунке. Оказалось, что точки A, G и E лежат на одной прямой.
Докажите, что тогда точки D, F и E также лежат на одной прямой.
Прямоугольники P и Q равновелики, но у P диагональ больше. Двумя копиями P можно накрыть Q. Докажите, что двумя копиями Q можно накрыть P.
|
|
Сложность: 3+ Классы: 8,9,10
|
Даны параллелограмм ABCD и такая точка K, что AK = BD. Точка M – середина CK. Докажите, что ∠BMD = 90°.
Дан квадрат ABCD. На продолжении диагонали AC за точку C отмечена такая точка K, что BK = AC. Найдите угол BKC.
|
|
Сложность: 3+ Классы: 8,9,10
|
Один квадрат вписан в окружность, а другой квадрат описан около той же окружности так, что его вершины лежат на продолжениях сторон первого (см. рисунок). Найдите угол между сторонами этих квадратов.
Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 993]