Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 92]
|
|
Сложность: 4 Классы: 8,9,10
|
Имеется два правильных пятиугольника с одной общей вершиной. Вершины каждого
пятиугольника нумеруются по часовой стрелке цифрами от 1 до 5, причём в общей
вершине ставится цифра 1. Вершины с одинаковыми номерами соединены прямыми.
Доказать, что полученные четыре прямые пересекаются в одной точке.
Существует ли пятиугольник со сторонами 3, 4, 9, 11 и 13 см, в который можно
вписать окружность?
|
|
Сложность: 4 Классы: 7,8,9
|
Внутри выпуклого пятиугольника выбраны две точки.
Докажите, что можно выбрать четырёхугольник с
вершинами в вершинах пятиугольника так, что внутрь
него попадут обе выбранные точки.
|
|
Сложность: 4+ Классы: 7,8,9,10
|
В выпуклом пятиугольнике ABCDE сторона AB перпендикулярна стороне CD, а сторона BC – стороне DE.
Докажите, что если AB = AE = ED = 1, то BC + CD < 1.
Может ли пятиугольник иметь ровно две оси симметрии?
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 92]