ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 401]      



Задача 57856

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 4+
Классы: 9

Даны непересекающиеся хорды AB и CD окружности и точка J на хорде CD. Постройте на окружности точку X так, чтобы хорды AX и BX высекали на хорде CD отрезок EF, делящийся точкой J пополам.
Прислать комментарий     Решение


Задача 57925

Темы:   [ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4+
Классы: 8,9

Дан треугольник ABC. На его сторонах AB и BC построены внешним образом квадраты ABMN и BCPQ. Докажите, что центры этих квадратов и середины отрезков MQ и AC образуют квадрат.
Прислать комментарий     Решение


Задача 78809

Темы:   [ Поворот помогает решить задачу ]
[ Вспомогательная окружность ]
[ Выпуклые многоугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4+
Классы: 9,10,11

На плоскости лежат две одинаковые фигуры, имеющие форму буквы ``Г'' . Концы коротких палочек у букв ``Г'' обозначим через A и A'. Длинные палочки разделены на n равных частей точками a1, ..., an - 1; a'1, ..., a'n - 1 (точки деления нумеруются от концов длинных палочек). Проводятся прямые Aa1, Aa2, ..., Aan - 1; A'a$\scriptstyle \prime$1, A'a'2, ..., A'a'n - 1. Точку пересечения прямых Aa1 и A'a$\scriptstyle \prime$1 обозначим через X1, прямых Aa2 и A'a$\scriptstyle \prime$2 — через X2 и т.д. Доказать, что точки X1, X2, ..., Xn - 1 образуют выпуклый многоугольник.

Примечание Problems.Ru: Предполагается, что данные фигуры совмещаются движением, сохраняющим ориентацию.
Прислать комментарий     Решение


Задача 78676

Темы:   [ Композиции поворотов ]
[ Процессы и операции ]
[ Круг, сектор, сегмент и проч. ]
[ Композиции движений. Теорема Шаля ]
Сложность: 5-
Классы: 8,9,10

Круглый пирог режут следующим образом. Вырезают сектор с углом $ \alpha$, переворачивают его на другую сторону и весь пирог поворачивают на угол $ \beta$. Дано, что $ \beta$ < $ \alpha$ < 180o. Доказать, что после некоторого конечного числа таких операций каждая точка пирога будет находиться на том же месте, что и в начале.
Прислать комментарий     Решение


Задача 109654

Темы:   [ Поворот на $90^\circ$ ]
[ Площадь. Одна фигура лежит внутри другой ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Неравенства с описанными, вписанными и вневписанными окружностями ]
Сложность: 5-
Классы: 9,10,11

Автор: Храбров А.

Выпуклый многоугольник M переходит в себя при повороте на угол 90o . Докажите, что найдутся два круга с отношением радиусов, равным , один из которых содержит M , а другой содержится в M .
Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .