Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 401]
а) Для данного треугольника
ABC, все углы которого меньше
120
o,
найдите точку, сумма расстояний от которой до вершин минимальна.
б) Внутри треугольника
ABC, все углы которого меньше
120
o,
взята точка
O, из которой его стороны видны под углом
120
o.
Докажите, что сумма расстояний от точки
O до вершин равна
(
a2 +
b2 +
c2)/2 + 2
S.
Для данного треугольника
ABC, один из углов которого больше
120
o,
найдите точку, сумма расстояний от которой до вершин минимальна.
Треугольник
A1B1C1 получен из треугольника
ABC поворотом на угол
(
< 180
o) вокруг центра его
описанной окружности. Докажите, что точки пересечения
сторон
AB и
A1B1,
BC и
B1C1,
CA и
C1A1 (или
их продолжений) являются вершинами треугольника, подобного
треугольнику
ABC.
|
|
Сложность: 4+ Классы: 9,10,11
|
Углы AOB и COD совмещаются поворотом так, что луч OA совмещается с лучом OC, а луч OB – с OD. В них вписаны окружности, пересекающиеся в точках E и F. Доказать, что углы AOE и DOF равны.
|
|
Сложность: 4+ Классы: 9,10,11
|
Как известно, Луна вращается вокруг Земли. Будем считать, что Земля и Луна – это точки, а Луна вращается вокруг Земли по круговой орбите с периодом один оборот в месяц. Летающая тарелка находится в плоскости лунной орбиты. Она может перемещаться прыжками через Луну и Землю: из старого места (точки А) она моментально появляется в новом (в точке A') так, что в середине отрезка АA' находится или Луна, или Земля. Между прыжками летающая тарелка неподвижно висит в космическом пространстве.
а) Определите, какое минимальное количество прыжков потребуется летающей тарелке, чтобы допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты.
б) Докажите, что летающая тарелка, используя неограниченное количество прыжков, может допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты за любой промежуток времени, например, за секунду.
Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 401]