ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 563]      



Задача 111809

Темы:   [ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
[ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 9,10

Автор: Скробот Д.

Вписанная в треугольник ABC окружность ω касается сторонAB и AC в точках D и E соответственно. Пусть P – произвольная точка на большей дуге DE окружности ω, F – точка, симметричная точке A относительно прямой DP, M – середина отрезка DE. Докажите, что угол FMP – прямой.

Прислать комментарий     Решение

Задача 115305

Темы:   [ Симметрия помогает решить задачу ]
[ Неравенство треугольника (прочее) ]
Сложность: 4
Классы: 8,9

Дан вписанный четырёхугольник ABCD , в котором BC=CD . Точка E — середина диагонали AC . Докажите, что BE+DE AC .
Прислать комментарий     Решение


Задача 115338

Темы:   [ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9

На боковых сторонах AB и BC равнобедренного треугольника ABC с углом 44° при вершине взяты такие точки M и N, что  AM = BN = AC.  Точка X на луче CA такова, что  MX = AB  Найдите угол MXN.

Прислать комментарий     Решение

Задача 115598

Темы:   [ Симметрия помогает решить задачу ]
[ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

В четырёхугольнике ABCD точки M и N — середины сторон AB и CD соответственно. Прямые AD и BC пересекают прямую MN соответственно в точках P и Q . Докажите, что если BQM = APM , то BC=AD .
Прислать комментарий     Решение


Задача 115916

Темы:   [ Симметрия помогает решить задачу ]
[ Диаметр, основные свойства ]
Сложность: 4
Классы: 8,9

Подобные прямоугольные треугольники ABC и A'B'A с прямыми углами при вершинах B и B' расположены на плоскости так, что точка A' лежит на луче BC за точкой C . Докажите, что центр окружности, описанной около треугольника A'AC , лежит на прямой A'B' .
Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .