ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 55696

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Диаметр, хорды и секущие ]
[ Перенос помогает решить задачу ]
Сложность: 4+
Классы: 8,9

С помощью циркуля и линейки параллельно данной прямой проведите прямую, на которой две данные окружности высекали бы хорды, сумма (или разность) длин которых имела бы заданную величину a.

Прислать комментарий     Решение


Задача 55606

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Признаки и свойства параллелограмма ]
[ Осевая и скользящая симметрии ]
[ Вписанный угол равен половине центрального ]
Сложность: 4+
Классы: 8,9

На плоскости дан треугольник ABC и точка M. Известно, что точки, симметричные точке M относительно двух сторон треугольника ABC попадают на окружность, описанную около треугольника ABC. Докажите, что точка, симметричная точке M относительно третьей стороны, также попадает на эту окружность.

Прислать комментарий     Решение


Задача 57826

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Перенос помогает решить задачу ]
Сложность: 4+
Классы: 8,9

Найдите геометрическое место точек: а) сумма; б) разность расстояний от которых до двух данных прямых имеет данную величину.
Прислать комментарий     Решение


Задача 57827

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Необычные построения ]
Сложность: 4+
Классы: 8,9

Угол, изготовленный из прозрачного материала, двигают так, что две непересекающиеся окружности касаются его сторон внутренним образом. Докажите, что на нем можно отметить точку, которая описывает дугу окружности.
Прислать комментарий     Решение


Задача 57825

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Четырехугольники (построения) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 6+
Классы: 8,9

Постройте четырехугольник по углам и диагоналям.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .