ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 57946

Тема:   [ Поворот (прочее) ]
Сложность: 3
Классы: 9

Поворот с центром O переводит прямую l1 в прямую l2, а точку A1, лежащую на прямой l1, — в точку A2. Докажите, что точка пересечения прямых l1 и l2 лежит на описанной окружности треугольника A1OA2.
Прислать комментарий     Решение


Задача 79270

Темы:   [ Поворот (прочее) ]
[ Принцип Дирихле (углы и длины) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10

Две одинаковые шестерёнки имеют по 32 зубца. Их совместили и спилили одновременно 6 пар зубцов. Доказать, что одну шестерёнку можно повернуть относительно другой так, что в местах сломанных зубцов одной шестерёнки окажутся целые зубцы второй шестерёнки.
Прислать комментарий     Решение


Задача 57947

Тема:   [ Поворот (прочее) ]
Сложность: 4
Классы: 9

На плоскости лежат две одинаковые буквы $ \Gamma$. Концы коротких палочек этих букв обозначим A и A'. Длинные палочки разбиты на n равных частей точками A1,..., An - 1; A1',..., An - 1' (точки деления нумеруются от концов длинных палочек). Прямые AAi и A'Ai' пересекаются в точке Xi. Докажите, что точки X1,..., Xn - 1 образуют выпуклый многоугольник.
Прислать комментарий     Решение


Задача 57948

Тема:   [ Поворот (прочее) ]
Сложность: 4
Классы: 9

По двум прямым, пересекающимся в точке P, равномерно с одинаковой скоростью движутся две точки: по одной прямой — точка A, по другой — точка B. Через точку P они проходят не одновременно. Докажите, что в любой момент времени описанная окружность треугольника ABP проходит через некоторую фиксированную точку, отличную от P.
Прислать комментарий     Решение


Задача 57949

Тема:   [ Поворот (прочее) ]
Сложность: 4+
Классы: 9

Для данного треугольника ABC, один из углов которого больше 120o, найдите точку, сумма расстояний от которой до вершин минимальна.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .