Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 345]
В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Биссектриса угла ACB пересекает эти высоты в точках L и K соответственно.
Докажите, что середина отрезка KL равноудалена от точек A1 и B1.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Пусть AHa и BHb – высоты
треугольника ABC, P и Q – проекции точки Ha на стороны AB и AC. Докажите, что прямая PQ делит отрезок HaHb пополам.
|
|
Сложность: 3+ Классы: 10,11
|
Точка Х расположена на диаметре АВ окружности радиуса R.
Точки K и N лежат на окружности в одной полуплоскости относительно АВ,
а ∠KXA = ∠NXB = 60°. Найдите длину отрезка KN.
Докажите, что если существует окружность, касающаяся всех
сторон выпуклого четырёхугольника ABCD, и окружность, касающаяся
продолжений всех его сторон, то диагонали такого четырёхугольника
взаимно перпендикулярны.
|
|
Сложность: 3+ Классы: 10,11
|
Окружность радиуса, равного высоте некоторого правильного треугольника, катится
по стороне этого треугольника. Доказать, что дуга, высекаемая сторонами
треугольника на окружности, всё время равна
60
o.
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 345]