ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 345]      



Задача 110815

Темы:   [ Гомотетия помогает решить задачу ]
[ Симметрия помогает решить задачу ]
[ Касающиеся окружности ]
Сложность: 4
Классы: 8,9

Через центр O окружности Σ , описанной около треугольника ABC , проведена прямая, параллельная BC и пересекающая стороны AB и AC в точках B1 и C1 соответственно. Окружность σ проходит через точки B1 и C1 и касается Σ в точке K . Найдите угол между прямыми AK и BC . Найдите площадь треугольника ABC и радиус окружности Σ , если BC=8 , AK=5 , B1C1=5 .
Прислать комментарий     Решение


Задача 111617

Темы:   [ Ортоцентр и ортотреугольник ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Через точку пересечения высот остроугольного треугольника ABC проходят три окружности, каждая из которых касается одной из сторон треугольника в основании высоты. Докажите, что вторые точки пересечения окружностей являются вершинами треугольника, подобного исходному.
Прислать комментарий     Решение


Задача 111724

Темы:   [ Пересекающиеся окружности ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
[ Параллелограммы (прочее) ]
Сложность: 4
Классы: 8,9

Дан параллелограмм ABCD, в котором  AB = a,  AD = b.  Первая окружность имеет центр в вершине A и проходит через D, вторая имеет центр в C и проходит через D. Произвольная окружность с центром B пересекает первую окружность в точках M1, N1, а вторую – в точках M2, N2. Чему равно отношение  M1N1 : M2N2?

Прислать комментарий     Решение

Задача 111915

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Симметрия помогает решить задачу ]
[ Поворот помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9,10

Угол B при вершине равнобедренного треугольника ABC равен 120°. Из вершины B выпустили внутрь треугольника два луча под углом 60° друг к другу, которые, отразившись от основания AC в точках P и Q, попали на боковые стороны в точки M и N (см. рис.). Докажите, что площадь треугольника PBQ равна сумме площадей треугольников AMP и CNQ.

Прислать комментарий     Решение

Задача 115285

Темы:   [ Вспомогательная окружность ]
[ Симметрия помогает решить задачу ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Из точки A проведены касательные AB и AC к окружности и секущая, пересекающая окружность в точках D и E ; M — середина отрезка BC . Докажите, что BM2 = DM· ME и угол DME в два раза больше угла DBE или угла DCE ; кроме того, BEM = DEC .
Прислать комментарий     Решение


Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 345]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .