ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 93]      



Задача 73767

Темы:   [ Системы точек ]
[ Неравенства с углами ]
[ Метод ГМТ ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 7,8,9

а) К любому конечному множеству точек плоскости, обладающему тем свойством, что любые три точки из этого множества являются вершинами невырожденного тупоугольного треугольника, всегда можно добавить ещё одну точку так, что это свойство сохранится. Докажите это.

б) Справедливо ли аналогичное утверждение для бесконечного множества точек плоскости?
Прислать комментарий     Решение


Задача 108750

Темы:   [ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Правильный (равносторонний) треугольник ]
[ Метод ГМТ ]
Сложность: 4
Классы: 8,9

Дан равносторонний треугольник ABC. Найти множество всех таких точек D, что треугольники ABD и BCD - равнобедренные (отрезки AB и BC могут служить как основаниями, так и боковыми сторонами).
Прислать комментарий     Решение


Задача 116753

Темы:   [ Наибольшая или наименьшая длина ]
[ Кривые второго порядка ]
[ Метод ГМТ ]
Сложность: 4
Классы: 10,11

Внутри окружности с центром O отмечены точки A и B так, что  OA = OB.
Постройте на окружности точку M, для которой сумма расстояний до точек A и B наименьшая среди всех возможных.

Прислать комментарий     Решение

Задача 65018

Темы:   [ Построение треугольников по различным элементам ]
[ Симметрия и построения ]
[ Метод ГМТ ]
[ Применение проективных преобразований прямой в задачах на построение ]
Сложность: 4+
Классы: 9,10,11

Автор: Фольклор

Постройте треугольник по высоте и биссектрисе, проведённым из одной вершины, и медиане, проведённой из другой вершины.

Прислать комментарий     Решение

Задача 116134

Темы:   [ Построение треугольников по различным точкам ]
[ Центральная симметрия помогает решить задачу ]
[ Метод ГМТ ]
Сложность: 4+
Классы: 8,9

Bосстановите остроугольный треугольник по ортоцентру и серединам двух сторон.

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 93]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .