Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 298]
N точек плоскости, никакие три из которых не лежат на одной прямой, попарно соединили отрезками (каждую с каждой). Часть отрезков покрасили красным, остальные – синим. Все красные отрезки образовали замкнутую несамопересекающуюся ломаную, и все синие отрезки – тоже. Найдите все N, при которых это могло получиться.
На каждой из двух параллельных прямых a и b отметили по 50 точек.
Каково наибольшее возможное количество остроугольных треугольников с вершинами в этих точках?
|
|
Сложность: 4 Классы: 10,11
|
В пространстве даны шесть точек общего положения. Для каждых двух из них покрасим красным точки пересечения (если они есть) отрезка между ними и поверхности тетраэдра с вершинами в четырех оставшихся точках. Докажите, что число красных точек четно.
|
|
Сложность: 4 Классы: 7,8,9
|
а) К любому конечному множеству точек плоскости, обладающему тем свойством, что любые три точки из этого множества являются вершинами невырожденного тупоугольного треугольника, всегда можно добавить ещё одну точку так, что это свойство сохранится. Докажите это.
б) Справедливо ли аналогичное утверждение для бесконечного множества точек плоскости?
Имеется 1955 точек. Какое максимальное число троек можно из них выбрать так,
чтобы каждые две тройки имели ровно одну общую точку?
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 298]