Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 298]
На плоскости даны 10 прямых общего положения. При каждой точке пересечения выбирается наименьший угол, образованный проходящими через неё прямыми. Найдите наибольшую возможную сумму всех этих углов.
|
|
Сложность: 4- Классы: 10,11
|
Внутри круга отмечены 100 точек, никакие три из которых не лежат на одной прямой.
Докажите, что их можно разбить на пары и провести прямую через каждую пару так, чтобы все точки пересечения прямых были в круге.
|
|
Сложность: 4 Классы: 8,9,10
|
Пусть $A_1$, $A_2$, $A_3$, $A_4$ и $B_1$, $B_2$, $B_3$, $B_4$ – две четверки точек, не лежащих на одной окружности. Известно, что для любых $i$, $j$, $k$ радиусы описанных окружностей треугольников $A_iA_jA_k$ и $B_iB_jB_k$ равны. Обязательно ли $A_iA_j=B_iB_j$ для любых $i$, $j$?
|
|
Сложность: 4 Классы: 9,10,11
|
На плоскости расположено n точек (n > 3), никакие три из которых не лежат на одной прямой.
Докажите, что среди треугольников с вершинами в данных точках остроугольные треугольники составляют не более трёх четвертей.
а) 10 точек, делящие окружность на 10 равных дуг, попарно соединены пятью хордами. Обязательно ли среди них найдутся две хорды одинаковой длины?
б) 20 точек, делящие окружность на 20 равных дуг, попарно соединены 10 хордами. Докажите, что среди них обязательно найдутся две хорды одинаковой длины?
Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 298]