ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 298]      



Задача 57781

Тема:   [ Барицентрические координаты ]
Сложность: 4
Классы: 9,10

Найдите барицентрические координаты а) центра описанной окружности; б) центра вписанной окружности; в) ортоцентра треугольника.
Прислать комментарий     Решение


Задача 57782

Тема:   [ Барицентрические координаты ]
Сложность: 4
Классы: 9,10

Относительно треугольника ABC точка X имеет абсолютные барицентрические координаты ($ \alpha$ : $ \beta$ : $ \gamma$). Докажите, что $ \overrightarrow{XA}$ = $ \beta$$ \overrightarrow{BA}$ + $ \gamma$$ \overrightarrow{CA}$.
Прислать комментарий     Решение


Задача 57783

Тема:   [ Барицентрические координаты ]
Сложность: 4
Классы: 9,10

Пусть ($ \alpha$ : $ \beta$ : $ \gamma$) — абсолютные барицентрические координаты точки X; M — центр масс треугольника ABC. Докажите, что 3$ \overrightarrow{XM}$ = ($ \alpha$ - $ \beta$)$ \overrightarrow{AB}$ + ($ \beta$ - $ \gamma$)$ \overrightarrow{BC}$ + ($ \gamma$ - $ \alpha$)$ \overrightarrow{CA}$.
Прислать комментарий     Решение


Задача 58285

Тема:   [ Системы точек ]
Сложность: 4
Классы: 8,9

На плоскости дано n точек, причем из любой четверки этих точек можно выбросить одну точку так, что оставшиеся точки будут лежать на одной прямой. Докажите, что из данных точек можно выбросить одну точку так, что все оставшиеся точки будут лежать на одной прямой.
Прислать комментарий     Решение


Задача 64347

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Ломаные ]
[ Индукция в геометрии ]
Сложность: 4
Классы: 9,10

Автор: Фольклор

На плоскости проведены n прямых, среди которых нет параллельных. Никакие три из них не пересекаются в одной точке. Докажите, что существует такая n-звенная несамопересекающаяся ломаная A0A1A2...An, что на каждой из n прямых лежит ровно по одному звену этой ломаной.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 298]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .