ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 >> [Всего задач: 13]      



Задача 73686

Темы:   [ Отношения площадей (прочее) ]
[ Средняя линия трапеции ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 5+
Классы: 8,9

Автор: Ивлев Б.М.

Каждая из девяти прямых разбивает квадрат на два четырёхугольника, площади которых относятся как 2 : 3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.
Прислать комментарий     Решение


Задача 111528

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношения площадей (прочее) ]
Сложность: 3
Классы: 8,9

Основание треугольника равно a, а высота, опущенная на основание, равна h. В треугольник вписан квадрат, одна из сторон которого лежит на основании треугольника, а две вершины на боковых сторонах. Найдите отношение площади квадрата к площади треугольника.

Прислать комментарий     Решение

Задача 34905

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Отношения площадей (прочее) ]
[ Площадь трапеции ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Каждая из 9 прямых разбивает квадрат на два четырхугольника, площади которых относятся как 2:3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.
Прислать комментарий     Решение


Задача 55006

Темы:   [ Общие четырехугольники ]
[ Выпуклые многоугольники ]
[ Отношения площадей (прочее) ]
Сложность: 3+
Классы: 8,9

Произвольный четырехугольник разделен диагоналями на четыре треугольника; площади трех из них равны 10, 20 и 30, и каждая меньше площади четвертого треугольника. Найдите площадь данного четырехугольника.

Прислать комментарий     Решение


Задача 65278

Темы:   [ Непрерывное распределение ]
[ Условная вероятность ]
[ Отношения площадей (прочее) ]
Сложность: 3+
Классы: 9,10,11

Коля и Женя договорились встретиться в метро в первом часу дня. Коля приходит на место встречи между полуднем и часом дня, ждёт 10 минут и уходит. Женя поступает точно так же.
  а) Какова вероятность того, что они встретятся?
  б) Как изменится вероятность встречи, если Женя решит прийти раньше половины первого, а Коля по-прежнему – между полуднем и часом?
  в) Как изменится вероятность встречи, если Женя решит прийти в произвольное время с 12.00 до 12.50, а Коля по-прежнему между 12.00 и 13.00?

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .