Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 102]
В круге проведены две хорды AB и CD, пересекающиеся в точке
M; K – точка пересечения биссектрисы угла BMD с хордой BD.
Найдите отрезки BK и KD, если BD = 3, а площади треугольников CMB и AMD относятся как 1 : 4.
Точка M, лежащая вне круга с диаметром AB, соединена с точками
A и B. Отрезки MA и MB пересекают окружность в точках C и D соответственно. Площадь круга, вписанного в треугольник AMB, в четыре раза больше, чем площадь круга, вписанного в треугольник
CMD. Найдите углы треугольника AMB, если известно, что один из них
в два раза больше другого.
Площадь треугольника ABC равна S. Найдите площадь треугольника, стороны которого равны медианам треугольника ABC.
Площадь трапеции ABCD равна 6. Пусть E – точка пересечения продолжений боковых сторон этой трапеции. Через точку E и точку пересечения диагоналей трапеции проведена прямая, которая пересекает меньшее основание BC в точке P, а большее основание AD – в точке Q. Точка F лежит на отрезке EC, причём
EF : FC = EP : EQ = 1 : 3. Найдите площадь треугольника EPF.
Дана трапеция ABCD. Параллельно её основаниям проведена прямая, пересекающая боковые стороны AB и CD соответственно в точках P и Q, а диагонали AC и BD соответственно в точках L и R. Диагонали AC и BD пересекаются в точке O. Известно, что BC = a, AD = b, а площади треугольников BOC и LOR равны. Найдите PQ, если точка L лежит между точками A и O.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 102]