ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 203 204 205 206 207 208 209 >> [Всего задач: 1221]      



Задача 109742

Темы:   [ Числовые таблицы и их свойства ]
[ Вспомогательные проекции ]
[ Процессы и операции ]
[ Инварианты ]
Сложность: 4+
Классы: 9,10,11

В магическом квадрате n×n, составленном из чисел 1, 2, ..., n², центры каждых двух клеток соединили вектором в направлении от большего числа к меньшему. Докажите, что сумма всех полученных векторов равна нулю. (Магическим называется клетчатый квадрат, в клетках которого записаны числа так, что суммы чисел во всех его строках и столбцах равны.)

Прислать комментарий     Решение

Задача 111043

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Классические неравенства (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Арифметическая прогрессия ]
Сложность: 4+
Классы: 9,10,11

Пусть  $x_1 \le \dots \le x_n$.  Докажите неравенство $$\bigg( \sum \limits_{i,j=1}^n |x_i-x_j|\bigg)^2 \le \frac{2 (n^2-1)}{3} \sum \limits_{i,j=1}^n (x_i-x_j)^2.$$ Докажите, что оно обращается в равенство только если числа $x_1, \dots, x_n$ образуют арифметическую прогрессию.

Прислать комментарий     Решение

Задача 73624

Темы:   [ Выпуклые многоугольники ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Процессы и операции ]
Сложность: 4+
Классы: 7,8,9

Автор: Яглом И.М.

В любом выпуклом многоугольнике, кроме параллелограмма, можно выбрать три стороны, при продолжении которых образуется треугольник, объемлющий данный многоугольник. Докажите это.
Прислать комментарий     Решение


Задача 78263

Темы:   [ Рекуррентные соотношения ]
[ Принцип крайнего (прочее) ]
[ Перебор случаев ]
Сложность: 4+
Классы: 8,9,10

Дана четвёрка ненулевых чисел a, b, c, d. Из неё получается новая ab, bc, cd, da по следующему правилу: каждое число умножается на следующее, четвёртое — на первое. Из новой четвёрки по этому же правилу получается третья и т.д. Доказать, что в полученной последовательности четвёрок никогда не встретится вновь четверка a, b, c, d, кроме случая, когда a = b = c = d = 1.
Прислать комментарий     Решение


Задача 109638

Темы:   [ Покрытия ]
[ Шахматная раскраска ]
[ Подсчет двумя способами ]
[ Геометрия на клетчатой бумаге ]
Сложность: 5-
Классы: 8,9,10

Можно ли прямоугольник $5 \times 7$ покрыть уголками из трёх клеток (т.е. фигурками, которые получаются из квадрата $2 \times 2$ удалением одной клетки), не выходящими за его пределы, в несколько слоёв так, чтобы каждая клетка прямоугольника была покрыта одинаковым числом клеток, принадлежащих уголкам?
Прислать комментарий     Решение


Страница: << 203 204 205 206 207 208 209 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .