Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 70]
|
|
Сложность: 4- Классы: 10,11
|
Что останется от прямоугольника?
Золотой прямоугольник — это такой прямоугольник, стороны
a и
b которого находятся в пропорции золотого сечения,
то есть удовлетворяют равенству
a :
b =
b : (
a -
b). Представим, что такой прямоугольник вырезан из
бумаги и лежит на столе, обращенный к нам своей более длинной
стороной. Отсечем по левую сторону прямоугольника наибольший
квадрат, который можно из него вырезать; остаток будет снова
золотым прямоугольником. Далее становимся по левую сторону стола
так, чтобы снова иметь перед собой более длинную сторону и
поступаем с новым прямоугольником так же, как и с предыдущим.
Таким образом обходим стол вокруг по направлению хода часовой
стрелки и по очереди отсекаем квадраты. Каждая точка
прямоугольника за исключением одной, будет раньше или позже
отсечена. Определите положение этой исключительной точки.
|
|
Сложность: 4- Классы: 10,11
|
Метод Ньютона. Для приближенного
нахождения корней уравнения
f (
x) = 0 Ньютон предложил искать
последовательные приближения по формуле
xn + 1 =
xn -
,
(начальное условие
x0
следует выбирать поближе к искомому корню).
Докажите, что для функции
f (
x) =
x2 -
k и начального условия
x0 > 0 итерационный процесс всегда будет сходиться к
,
то есть
xn =
.
Как будет выражаться
xn + 1 через
xn? Сравните результат с
формулой из задачи
9.48.
|
|
Сложность: 4- Классы: 9,10,11
|
Дан многочлен P(x) степени 2003 с действительными
коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная
последовательность целых чисел a1, a2, ..., такая, что P(a1) = 0,
P(a2) = a1, P(a3) = a2 и т. д. Докажите, что не все
числа в последовательности a1, a2, ... различны.
|
|
Сложность: 4- Классы: 9,10,11
|
Дан квадратный трёхчлен f(x) = x² + ax + b. Уравнение f(f(x)) = 0 имеет четыре различных действительных корня, сумма двух из которых равна –1. Докажите, что b ≤ – ¼.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Имеются два сосуда. В них разлили 1 л воды. Из
первого сосуда переливают половину воды во второй, затем из
второго переливают половину оказавшейся в нем воды в первый,
затем из первого сосуда переливают половину оказавшейся в нем
воды во второй и т. д. Докажите, что независимо от того, сколько
воды было сначала в каждом из сосудов, после 100 переливаний в
них будет
л и
л с точностью до 1
миллилитра.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 70]