Страница:
<< 171 172 173 174
175 176 177 >> [Всего задач: 1111]
|
|
Сложность: 3- Классы: 7,8,9
|
В какое наибольшее количество цветов можно раскрасить клетки шахматной доски 8×8 так, чтобы каждая клетка граничила по стороне хотя бы с двумя клетками того же цвета?
|
|
Сложность: 3 Классы: 6,7,8
|
Несколько футбольных команд проводят турнир в один круг.
Докажите, что в любой момент турнира найдутся две команды, сыгравшие к этому моменту одинаковое число матчей.
а) Какое наибольшее число полей на доске 8×8 можно закрасить в чёрный цвет так, чтобы в каждом уголке из трёх полей было по крайней мере одно незакрашенное поле?
б) Какое наименьшее число полей на доске 8×8 можно закрасить в чёрный цвет так, чтобы в каждом уголке из трёх полей было по крайней мере одно чёрное поле?
|
|
Сложность: 3 Классы: 6,7,8
|
На доске 25×25 расставлены 25 шашек, причём их расположение симметрично относительно обеих главных диагоналей.
Докажите, что одна из шашек стоит в центральной клетке.
Можно ли замостить доминошками 1×2 шахматную доску 8×8, из которой
вырезаны
а) клеточки b3 и e7;
б) два противоположных угловых поля (a1 и h8)?
Страница:
<< 171 172 173 174
175 176 177 >> [Всего задач: 1111]