Страница:
<< 27 28 29 30
31 32 33 >> [Всего задач: 231]
|
|
Сложность: 3+ Классы: 9,10,11
|
Найдите рациональное число, которое отличается от числа
а) α = ; б) α = 2 + ; в) α = 3 + не более чем на 0,0001.
[Теорема Валена]
|
|
Сложность: 3+ Классы: 10,11
|
Докажите, что если Pn/Qn (n ≥ 1) – подходящая дробь к числу α, то имеет место по крайней мере одно из неравенств или Получите отсюда теорему Валена: для любого α найдётся бесконечно много таких дробей p/q, что |α – p/q| < 1/2q2.
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Докажите, что для любого простого числа p > 2 числитель дроби m/n = 1/1 + 1/2 + ... + 1/p–1 делится на p.
|
|
Сложность: 3+ Классы: 9,10,11
|
Докажите, что если p – простое число, p ≠ 2, 5, то длина периода разложения 1/p в десятичную дробь делит p – 1.
Приведите пример, когда длина периода совпадает с p – 1.
|
|
Сложность: 3+ Классы: 9,10,11
|
Выпишем в ряд все правильные дроби со знаменателем n и сделаем возможные сокращения. Например, для n = 12 получится следующий ряд чисел: 0/1, 1/12, 1/6, 1/4, 1/3, 5/12, 1/2, 7/12, 2/3, 3/4, 5/6, 11/12 Сколько получится дробей со знаменателем d, если d – некоторый делитель числа n?
Страница:
<< 27 28 29 30
31 32 33 >> [Всего задач: 231]