ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 108888
УсловиеОкружность, построенная на стороне AC остроугольного треугольника ABC как на диаметре, пересекает стороны AB и BC в точках K и L. Касательные к этой окружности, проведённые в точках K и L, пересекаются в точке M. Докажите, что прямая BM перпендикулярна AC. Решение Первый способ. Пусть O – середина AC, тогда ∠KOL = 2∠KAL = 2(90° – ∠B). Второй способ. Пусть отрезки AL и CK пересекаются в точке H. Поскольку AL и CK – высоты треугольника ABC, то третья его высота BN проходит через точку H. Из теоремы об угле между касательной и хордой следует, что ∠BKM = ∠ACK = ∠ABN. Поэтому прямая KM проходит через середину гипотенузы прямоугольного треугольника BKH. Аналогично прямая LM также проходит через середину BH. Значит, точка M пересечения этих прямых – середина BH, то есть лежит на третьей высоте BN треугольника ABC. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|