ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108973
Темы:    [ Теорема синусов ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

M – произвольная точка на стороне AC треугольника ABC . Доказать, что отношение радиусов окружностей, описанных около треугольников ABM и BCM , не зависит от выбора точки M на стороне AC .

Решение

Немедленно следует из (обобщенной) теоремы синусов, примененной к треугольникам ABM и BCM,

Источники и прецеденты использования

олимпиада
Название Белорусские республиканские математические олимпиады
олимпиада
Год 1961
Номер 11
Название 11-я Белорусская республиканская математическая олимпиада
Задача
Название Задача 9.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .