ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 110009
УсловиеПо кругу выписаны в некотором порядке все натуральные числа от 1 до N , N2 . При этом для любой пары соседних чисел имеется хотя бы одна цифра, встречающаяся в десятичной записи каждого из них. Найдите наименьшее возможное значение N .РешениеПоскольку однозначные числа не имеют общих цифр, то N>9 . А так как числа, соседние с числом 9, должны содержать девятку в своей записи, то меньшее из них не может быть меньше, чем 19, а большее – меньше, чем 29. Следовательно, N29.Равенство N=29 возможно, поскольку условиям задачи удовлетворяет, например, такой порядок расстановки чисел от 1 до 29 по кругу: 1, 11, 10, 20, 21, 12, 2, 22, 23, 3, 13, 14, 4, 24, 25, 5, 15, 16, 6, 26, 27, 7, 17, 18, 8, 28, 29, 9, 19. Ответ29.00Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|