ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 111336
Темы:    [ Десятичная система счисления ]
[ Процессы и операции ]
[ Сочетания и размещения ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4+
Классы: 9,10
В корзину
Прислать комментарий

Условие

Назовём усложнением числа приписывание к нему одной цифры в начало, в конец или между любыми двумя его цифрами. Существует ли натуральное число, из которого невозможно получить полный квадрат с помощью ста усложнений?


Решение

Докажем, что среди 500-значных чисел найдётся искомое. Если 500-значное число усложнить 100 раз, получится 600-значное число. Существует менее 7·10299  600-значных полных квадратов  ((3·10299)² < 10599).  Зафиксируем k – один из этих квадратов. Количество чисел, из которых его можно получить описанной в условии операцией, не превосходит количества способов зачеркнуть в нем 100 цифр, то есть    Таким образом, общее количество 500-значных чисел, из которых может быть получен полный квадрат, не превосходит  7·10299·2600 < 7·10299·8200 < 9·10449,  то есть меньше количества 500-значных чисел.


Ответ

Существует.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 71
Год 2008
вариант
Класс 9
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .