ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 34992
УсловиеВнутри квадрата отмечено 100 точек. Квадрат разбит на треугольники таким образом, что вершинами треугольников являются только отмеченные 100 точек и вершины квадрата, причём для каждого треугольника разбиения каждая отмеченная точка либо лежит вне этого треугольника, либо является его вершиной (разбиения такого типа называются триангуляциями). Найдите число треугольников разбиения. ПодсказкаПодсчитайте сумму углов всех треугольников. РешениеСумма углов треугольников с вершиной в некоторой вершине квадрата равна 90°, каждая из отмеченных 100 точек даёт вклад, равный 360°. Поскольку других вершин треугольников нет, то сумма углов всех треугольников разбиения равна 100·360° + 4·90° = 202·180°. Поскольку сумма углов треугольника равна 180°, то количество треугольников равно 202. Ответ202 треугольника. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|