ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52985
Темы:    [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

О треугольнике KLM известно, что $ \angle$LKM = $ \beta$, $ \angle$LMK = $ \gamma$, KM = a. На стороне KL взята точка N, причём KN = 2NL. Через точки L и N проведена окружность, касающаяся стороны KM или её продолжения за точку M. Найдите радиус окружности.


Подсказка


Ответ

$ {\frac{a\left(\frac{5}{3} - 2\sqrt{\frac{2}{3}}\cos \beta \right) \sin \gamma}{2\sin \beta \sin (\beta + \gamma)}}$.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 652

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .