ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 54457
Темы:    [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вспомогательные подобные треугольники ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

В треугольнике ABC сторона AB равна стороне BC. Пусть D – основание перпендикуляра, опущенного из B на сторону AC,  E – точка пересечения биссектрисы угла A со стороной BC. Через точку E проведён перпендикуляр к AE до пересечения с продолжением стороны AC в точке F (C между F и D). Известно, что  AD = m,  FC = m/4.  Найдите площадь треугольника ABC.


Решение

См. задачу 54454.


Ответ

.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2221

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .