ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 55711
Темы:    [ Центральная симметрия помогает решить задачу ]
[ Параллелограмм Вариньона ]
Сложность: 4+
Классы: 8,9
Название задачи: Теорема Монжа..
В корзину
Прислать комментарий

Условие

Докажите, что прямые, проведённые через середины сторон вписанного четырёхугольника перпендикулярно противоположным сторонам, пересекаются в одной точке.


Подсказка

Середины сторон любого четырёхугольника являются вершинами параллелограмма.


Решение

Середины сторон четырёхугольника являются вершинами параллелограмма. При симметрии относительно точки пересечения диагоналей этого параллелограмма рассматриваемые перпендикуляры переходят в серединные перпендикуляры к сторонам данного четырёхугольника. Поскольку данный четырёхугольник вписанный, то эти серединные перпендикуляры пересекаются в одной точке — центре описанной окружности. Следовательно, рассматриваемые перпендикуляры также пересекаются в одной точке.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 5706

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .