ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56502
Темы:    [ Признаки и свойства параллелограмма ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

На сторонах параллелограмма внешним образом построены квадраты. Докажите, что их центры образуют квадрат.


Решение

Пусть P, Q и R – центры квадратов, построенных на сторонах DA, AB и BC параллелограмма с острым углом α при вершине A. Тогда
PAQ = 90° + α = ∠RBQ,  а значит, треугольники PAQ и RBQ равны. Стороны AQ и BQ этих треугольников перпендикулярны, поэтому  PQQR.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 1
Название Подобные треугольники
Тема Подобные треугольники
параграф
Номер 4
Название Вспомогательные равные треугольники
Тема Подобные треугольники (прочее)
задача
Номер 01.046

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .