ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58258
Тема:    [ Разные задачи на разрезания ]
Сложность: 6
Классы: 8,9
В корзину
Прислать комментарий

Условие

Докажите, что выпуклый 22-угольник нельзя разрезать диагоналями на 7 пятиугольников.

Решение

Докажем по индукции, что (3k + 1)-угольник нельзя разрезать по диагоналям на k пятиугольников. Для k = 1 это утверждение очевидно. Предположим теперь, что оно доказано для всех (3k + 1)-угольников, и докажем его для (3k + 4)-угольника. Предположим, что (3k + 4)-угольник разрезан по диагоналям на k + 1 пятиугольник. Если каждый из них имеет не более трех сторон на границе, то число сторон многоугольника не более 3k + 3. Поэтому существует пятиугольник с четырьмя сторонами на границе. Отрезав его, получим (3k + 1)-угольник, разрезанный диагоналями на k пятиугольников. Получено противоречие.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 25
Название Разрезания, разбиения, покрытия
Тема Разрезания, разбиения, покрытия и замощения
параграф
Номер 6
Название Разные задачи на разрезания
Тема Разные задачи на разрезания
задача
Номер 25.037

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .