ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60473
Темы:    [ Простые числа и их свойства ]
[ Целочисленные и целозначные многочлены ]
Сложность: 2+
Классы: 6,7,8
В корзину
Прислать комментарий

Условие

Верно ли, что многочлен  P(n) = n² + n + 41  при всех n принимает только простые значения?


Подсказка

Подставьте  n = 40  или  n = 41.


Ответ

Неверно.

Замечания

При  n = 0, 1, ..., 39  числа P(n) будут простыми.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 3
Название Алгоритм Евклида и основная теорема арифметики
Тема Алгебра и арифметика
параграф
Номер 1
Название Простые числа
Тема Основная теорема арифметики. Разложение на простые сомножители
задача
Номер 03.021

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .