ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60605
Тема:    [ Арифметика. Устный счет и т.п. ]
Сложность: 3
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Григорианский календарь. Обыкновенный год содержит 365 дней, високосный – 366. n-й год, номер которого не делится на 100, является високосным тогда и только тогда, когда n кратно 4. n-й год, где n кратно 100, является високосным тогда и только тогда, когда n кратно 400. Так, например, 1996 и 2000 годы високосные, а 1997 и 1900 – нет. Эти правила были установлены папой Григорием XIII. До сих пор мы имели ввиду гражданский год, число дней которого должно быть целым. Астрономическим же годом называется период времени, за который Земля совершает полный оборот вокруг Солнца. Считая, что григорианский год полностью согласован с астрономическим, найдите продолжительность астрономического года.


Решение

Если бы 400 последовательных григорианских лет в точности соответствовали 400 астрономическим годам, то продолжительность одного астрономического года равнялась бы
(97·366 + 303·365) : 400 = 36597/407  дням.


Ответ

36597/407 дня.

Замечания

Полученное число всего лишь на 26 секунд превышает продолжительность года, найденную из астрономических наблюдений. Расхождение невелико: оно составляет один день в 3323 года.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 3
Название Алгоритм Евклида и основная теорема арифметики
Тема Алгебра и арифметика
параграф
Номер 5
Название Цепные дроби
Тема Цепные (непрерывные) дроби
задача
Номер 03.153

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .