ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 61209
Тема:    [ Тождественные преобразования (тригонометрия) ]
Сложность: 3
Классы: 9,10
В корзину
Прислать комментарий

Условие

Докажите тождества:
а) sin$ \alpha$ + sin$ \beta$ + sin$ \gamma$ - sin($ \alpha$ + $ \beta$ + $ \gamma$) = 4 sin$ {\dfrac{\alpha+\beta}{2}}$sin$ {\dfrac{\beta+\gamma}{2}}$sin$ {\dfrac{\alpha+\gamma}{2}}$;
б) cos$ \alpha$ + cos$ \beta$ + cos$ \gamma$ + cos($ \alpha$ + $ \beta$ + $ \gamma$) = 4 cos$ {\dfrac{\alpha+\beta}{2}}$cos$ {\dfrac{\beta+\gamma}{2}}$cos$ {\dfrac{\alpha+\gamma}{2}}$.


Подсказка

а) На первом шаге нужно применить формулы для суммы и разности синусов к величинам sin$ \alpha$ + sin$ \beta$ и sin$ \gamma$ - sin($ \alpha$ + $ \beta$ + $ \gamma$). б) Решается аналогично предыдущему пункту.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 8
Название Алгебра + геометрия
Тема Неопределено
параграф
Номер 3
Название Тригонометрия
Тема Тригонометрия (прочее)
задача
Номер 08.048

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .