ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64636
Темы:    [ Числовые таблицы и их свойства ]
[ Теория алгоритмов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 4-
Классы: 10,11
В корзину
Прислать комментарий

Условие

Автор: Храмцов Д.

Все клетки квадратной таблицы n×n пронумерованы в некотором порядке числами от 1 до n². Петя делает ходы по следующим правилам. Первым ходом он ставит фишку в любую клетку. Каждым последующим ходом Петя может либо поставить новую фишку на какую-то клетку, либо переставить фишку из клетки с номером a ходом по горизонтали или по вертикали в клетку с номером большим, чем a. Каждый раз, когда фишка попадает в клетку, эта клетка немедленно закрашивается; ставить фишку на закрашенную клетку запрещено. Какое наименьшее количество фишек потребуется Пете, чтобы независимо от исходной нумерации он смог за несколько ходов закрасить все клетки таблицы?


Решение

  n фишек достаточно. Действительно, на каждую строку хватит одной фишки: можно поставить её в клетку строки с минимальным номером, а затем обойти все клетки строки в порядке возрастания номеров.
  Покажем, что меньшего числа фишек может и не хватить. Для этого пронумеруем клетки одной диагонали числами 1, 2, ..., n, а остальные клетки нумеруем произвольно. Тогда одна фишка не сможет побывать на двух клетках этой диагонали: если фишка встала на одну её клеток, то следующим ходом она обязана будет пойти на клетку с номером, большим n, и значит, после этого не сможет вернуться на диагональ. Поскольку на каждой клетке диагонали должна побывать фишка, Пете придётся использовать не менее n фишек.


Ответ

n фишек.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2013-2014
этап
1
Вариант 4
класс
Класс 11
1
задача
Номер 11.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .