ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 77895
УсловиеДана окружность и точка вне её; из этой точки мы совершаем путь по замкнутой ломаной, состоящей из отрезков прямых, касательных к окружности, и заканчиваем путь в начальной точке. Участки пути, по которым мы приближались к центру окружности, берём со знаком `` плюс'', а участки пути, по которым мы удалялись от центра, — со знаком `` минус''. Докажите, что для любого такого пути алгебраическая сумма длин участков пути, взятых с указанными знаками, равна нулю. (Эту задачу не решил никто из участников олимпиады.)РешениеПусть ABCD...YZ — указанная замкнутая ломаная, tA, tB, ..., tZ — длины касательных к окружности, проведённых из вершин ломаной. В соответствии с соглашением о знаках алгебраическая длина участка пути от A к B равна tA - tB. Поэтому алгебраическая сумма длин участков пути с указанными знаками равна
(tA - tB) + (tB - tC) + ... + (tY - tZ) + (tZ - tA) = 0.
Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|