ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78472
Темы:    [ Формулы сокращенного умножения (прочее) ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

a1, a2, ..., an  – такие числа, что  a1 + a2 + ... + an = 0.  Доказать, что в этом случае справедливо соотношение   S = a1a2 + a1a3 + ... + an–1an ≤ 0
(в сумму S входят все возможные произведения aiaj,  i ≠ j).


Подсказка

См. решение задачи 78470.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 26
Год 1963
вариант
1
Класс 8
Тур 1
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .